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Abstract

In the past decade, California’s investor-owned electric utilities have begun implementing

Public Safety Power Shutoffs (PSPS) as part of their effort to adapt to increasing risk of catas-

trophic wildfires. I examine the extent that these decisions are correlated with two measures of

community vulnerability: health risk factors and socioeconomic status (SES). I first construct a

dataset linking weather, vulnerability indices, and PSPS decisions for electric circuits in Califor-

nia’s three largest investor-owned utilities. I show that PSPS is used more frequently in circuits

with lower average SES among two of California’s major utilities, and circuits with higher av-

erage health risk in one of the major utilities. To focus on utilities’ decisions, rather than other

sources of inequality that may place vulnerable communities in areas with higher wildfire risk,

I repeat this analysis after controlling for population and weather variation. The results are

qualitatively similar. I then examine two key factors in firms’ shutoff decisions: ignitions along

power lines and the magnitude of service interruption. After controlling for weather variation,

I find that ignitions are more frequent in low-SES circuits and in lower health risk circuits for

one utility. When observations are aggregated across all utilities in the sample, the probability

of ignition and the magnitude of PSPS disruption are higher in low-SES circuits, and lower in

circuits with high health risks.

1 Introduction

In the last decade, electric utilities in California have been forced to adapt to increasing risk of

catastrophic wildfire. Climate change, forest management practices, and shifting wildland-urban

interface have contributed to the most severe wildfire seasons in California’s history. Electric

utility infrastructure has sparked some of the costliest wildfires. Under California law, utilities

are financially responsible for these damages. Utilities have already faced billions in dollars in

fines, driving Pacific Gas and Electric (PG&E) to declare bankruptcy in 2019. To make their

electric lines safer, utilities invest in managing vegetation, upgrading infrastructure, and moving

lines underground. However, these improvements are relatively slow and wildfire risk can require

utilities to respond quickly. In these cases, utilities are sometimes forced to de-energize power lines

to avoid sparking wildfires.
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This paper focuses on this last-ditch effort to prevent wildfire, the Public Safety Power Shutoff

(PSPS). In a PSPS, a utility preemptively de-energizes lines that are likely to spark large wildfires.

Sunce first PSPS in 2013, over 5,000 circuits (small segments of the electric grid) have been de-

energized and over 1 million customers impacted (Hill et al., 2020). I focus on shutoffs from

2013-2021 by the three largest investor-owned utilities in California: Southern California Edison

(SCE), Pacific Gas and Electric (PG&E), and San Diego Gas and Electric (SDG&E). Over 99% of

shutoffs during this time period were conducted by one of these utilities.

PSPS events are subject to strict regulation, which makes them a useful data source to exam-

ine the equitability of utilities’ adaptation to wildfire risk overall. Because shutoffs are costly to

impacted communities, utilities are forced to justify each shutoff decision. Utilities must demon-

strate that they carefully weigh the costs and benefits of each de-energization event (CPUC, 2019),

and publish reports on their decision-making process (SCE, 2021; PG&E, 2021; SDG&E, 2021a).

Records of each PSPS event are then disclosed to the public. This provides a rare window into

utilities’ adaptation to wildfire risk, as information on other investments are classified to avoid risks

to critical national infrastructure.

The main hypothesis this paper evaluates is whether PSPS events have been equitably dis-

tributed. While PSPS is necessary in the short run to adapt to rising wildfire risk, shutoffs could

exacerbate inequalities if disadvantaged communities receive fewer benefits or bear more costs. I

examine two dimensions of inequality that increase vulnerability during electricity outages: so-

cioceconomic status (SES) and health risk. Low-SES communities may have limited resources to

adapt to electricity failures, and those with health risks may experience complications from wildfire

smoke or electricity outages. I use definitions of health risk and SES from CalEnviroScreen (August

et al., 2021). I focus on the costs of PSPS events, as evaluating the benefit of PSPS depends on

predicting the size and damages of potential wildfires. This is a notoriously challenging problem,

even given modern machine learning techniques (Taylor et al., 2013; Xi et al., 2019; Jain et al.,

2020). Many Californians benefit from reduced wildfire risk, and rural populations or those with

health risk factors may benefit most from reducing wildfire smoke (D’Evelyn et al., 2022).

Correlation between PSPS decisions and vulnerability could be explained by differences in utili-

ties’ investments or by various weather, vegetation, and development conditions that impact wildfire

risk. It’s important to identify the source of any inequality, to help determine the appropriate re-

sponse. While there are not publicly available data on utilities’ infrastructure investments, it is

possible to consider the role of some key factors such as population and weather. I therefore compare

circuits that differ in average SES or health risk, with and without population and weather controls.

Without population or weather controls, I can assess whether vulnerable populations experience

different rates of shutoffs. With these controls, I can assess whether this difference is explained

by key observable factors outside the utility’s control. To conduct this analysis, I first construct a

dataset linking vulnerability indices, weather, population, and PSPS records from 2013-2021.

This hypothesis relates to several literatures. First is a literature studying the environmental

justice of wildfire risk. In early work to explore this topic, Niemi and Lee (2001) describe how
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poverty can increase wildfire incidence and damages and Ojerio (2008) shows that federal wildfire

preparedness grants are concentrated in higher-SES communities. One strand of this literature

focuses on comparing populations that live in high wildfire risk regions. Wigtil et al. (2016) docu-

ment that places with higher wildfire potential generally have lower social vulnerability to wildfire

risk. Wibbenmeyer and Robertson (2022) find higher average property value, older residents, and

more white residents in places with high wildfire potential. Another strand focuses on the impacts

and responses of wildfires. D’Evelyn et al. (2022) argue that the health effects of wildfire smoke

disproportionately impact populations with limited adaptive capacity. Anderson, A. Plantinga,

Wibbenmeyer, et al. (2020) study inequality in firefighting responses, and document preferential

treatment to higher SES communities following salient wildfire events. A. J. Plantinga, Walsh, and

Wibbenmeyer (2022) study the historical spread of fires and find that firefighting efforts prioritize

high-value properties.

Within this literature, several recent studies have examined PSPS as a tool to combat wildfire

risk. Guliasi (2021) gives an analysis of the political economy and history of the PSPS. Hill et

al. (2020) examines potential health costs from PSPS, and Wong-Parodi (2020) surveys impacted

California residents about attitudes towards PSPS events. Rhodes, Ntaimo, and Roald (2020)

studies the PSPS as an optimization problem, and suggests improvements to current decision

processes using a test case. This paper is the first, to my knowledge, to empirically study the

equity of these shutoff decisions.

This hypothesis is also related to literature on measuring equity in adaptation to climate change.

Among environmental advocates, there has long been a call to focus on equity in climate change

adaptation (Smit and Pilifosova, 2003; Thomas and Twyman, 2005). In their report, IPCC (2022)

identifies several settings where inequality and poverty have set “soft limits” on the ability of groups

to adapt to climate change. Coggins et al. (2021) conducted a review of literature on equity in

climate change adaptation and highlighted several examples of work assessing the equity of climate

adaptation. Sheller and Leon (2016) use interviews to study how historical inequalities between

Haiti and the Dominican Republic impacted government responses to similar environmental crises,

and Satyal, Byskov, and Hyams (2021) use environmental justice theory to examine how systemic

injustices facing an indigenous group in Uganda undermine adaptation planning. However, Coggins

et al. (2021) ultimately conclude that more work is needed in this area, especially in empirical

assessment of equity and justice. This paper addresses this gap by providing an empirical assessment

of equity in PSPS decisions.

As a secondary hypothesis, I evaluate the extent that utilities’ calculations of two factors in the

shutoff decision contribute to any inequitable distribution of shutoff decisions. These two primary

factors are the probability of ignition and the cost of an outage to the impacted communities.

These factors are identified based on guidelines in utilities’ published Wildfire Mitigation Plans

(SCE, 2021; PG&E, 2021; SDG&E, 2021a).

The basic elements of these plans are similar across utilities, although each utility uses pro-

prietary data and modeling resources. For each circuit, the utility weighs the expected value of
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damages from a wildfire against the expected cost of the PSPS outage to impacted communities.

Teams of meteorologists, fire scientists, and data scientists predict regions where ignitions are likely

to spread to large fires. They use data of line conditions from public weather reports, service crews,

and private weather stations to identify lines that could spark wildfires. These experts form pre-

dictions using public and private information, relying on machine learning models and extensive

simulations of wildfire behavior. If their predictions find that the likely costs of wildfire exceed the

costs of shutting off power, they notify residents and de-energize the circuit. Power remains off

until weather conditions are less severe and the utility inspects affected circuits for any debris or

damage.

Publicly available data allow me to evaluate the association between vulnerability and both the

probability of ignition and the the cost of an outage to the impacted communities. Each factor

may positively or negatively associated with vulnerability. For example, the probability of ignition

may be higher in more vulnerable communities if utilities underinvest in infrastructure, or may be

lower if utilities act to minimize impacts to vulnerable populations. The cost of an outage are likely

higher for vulnerable populations (given health risks and lower access to backup power), but the

way that utilities calculate the cost of an outage could place less weight on these populations.

To find the probability of ignition, I use logistic regression with records of ignitions along circuits

from 2013-2021. To find the cost of an outage to the community, I select two proxies based on

wildfire management plans and post-event reports: the size of interruption (in customer minutes

interrupted) and the number of customers impacted. In their regulatory filings, utilities state that

they model the cost of declaring PSPS as linear in the expected size of interruption (SCE, 2021;

PG&E, 2021; SDG&E, 2021a). However, the calculations I find from post-event reports indicate

that cost is linear in number of customers (Valdberg, Tozer, and Kilberg, 2021). Without further

insight into how utilities make decisions, I report results using both proxies.

This hypothesis is related to a literature on identifying bias in decision making, specifically

in cases where agents make decisions relying on complex algorithms. There is a broad literature

on studying discrimination in decision-making, dating back to at least Becker (1957). Lang and

Kahn-Lang Spitzer (2020) and Mehrabi et al. (2021) provide reviews of economics and machine

learning literature, respectively, on identifying bias in decision making. Recent examples examining

bias in human decisions include an analysis of racial bias in healthcare decision rules (Obermeyer

et al., 2019) and in pretrial appearance risk (Rambachan, 2021). Examples examining bias in

algorithms include facial recognition software (Buolamwini and Gebru, 2018) and predicting risks

from medical records data (Gianfrancesco et al., 2018; Parikh, Teeple, and Navathe, 2019). Like

these studies, I examine decisions and look for evidence of unequal treatment after controlling for

relevant, exogenous variation. This setting, where agents make algorithm-supported decisions, is

less well-studied by the existing literature.

The remainder of this paper is structured as follows. Section 2 describes how the dataset

is constructed, and provides summary statistics for several sources of that dataset. Section 3

provides background on modeling choices used to investigate the hypotheses, including institutional
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background on utilties’ decisions. Section 4 gives the results of my analysis, and discusses their

interpretation. Section 5 concludes.

2 Data

My analysis relies on a dataset with records of weather variation, vulnerability indices, ignitions

along electric circuits, and shutoff decisions from 2013-2021. The unit of analysis is the electric

circuit, a small unit of the electricity distribution network. PSPS decisions are generally made and

recorded at this level. To construct this dataset, I merge administrative records of shutoffs and

ignitions, gridded daily weather observations, and Census tract-level data of socioeconomic status

and health vulnerability.

2.1 PSPS Events

Filings from firms to the CPUC provide a complete record of PSPS events. Firms are required

to report statistics after each shutoff, so this dataset represents the universe of shutoffs between

October 2013 and December 2021. The CPUC summarizes these reports and publishes a record

of each shutoff. Each record includes the circuit targeted, the date and time of the shutoff, the

duration of the outage, the number of customers impacted, and information on what types of

customers are impacted. Table 1 summarizes these filings by year and firm.

In order to link these with other geospatial records, I use integrated capacity analysis (ICA)

maps from each electric utility. ICA maps are circuit-level maps of the distribution infrastructure,

although some circuit segments are not published due to privacy concerns. I am able to match over

98% of PSPS records to their corresponding geographic file. The ICA maps include 5,411 circuits;

there are PSPS events recorded on 20.3% of these circuits. Figure 1a shows the location of these

circuits.

PSPS events are generally reported at the circuit level. In some cases, a firm can conduct a

sub-circuit level outage. As the circuit level is the most specific level in the ICA maps, I am unable

to match sub-circuit level outages to geographic information or other datasets. I sum these outages

to the circuit level to merge with the other datasets.

2.2 Fire Ignitions

To study the risk of igniting a fire, I use administrative records of fires ignited along utility lines

from 2014 through 2021. Per CPUC guidelines, firms must report all fires to their knowledge

larger than one meter (CPUC, 2014). This dataset includes 4,550 ignitions from the three firms I

study. These filings are required to include the ignition location, but not the corresponding circuit

segment. To match these to the circuit records, I find the closest circuit segment from the ICA

maps to the ignition location. Figure 1b shows the location of these circuits.

2.3 Vulnerability

I use data from CalEnviroScreen to measure population vulnerability (August et al., 2021). The

authors construct a Census tract-level database of health risk factors and socioeconomic status

(SES) indicators. This database is primarily intended to assess environmental and energy justice

in the state of California. I use these indexes, as well as tract-level population, in my analysis.

I construct an SES index and a health risk index to summarize health risk factors and SES
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year 2013 2014 2017 2018 2019 2020 2021
Utility

SCE
Customers – – – – 196,879 235,879 117,690
Million CMI – – – – 353 280 372
# PSPS Events – – – – 246 1,501 122

PG&E
Customers – – – 47,324 1,987,783 645,859 79,630
Million CMI – – – 89.8 6,670 1,560 174
# PSPS Events – – – 32 1,458 670 219

SDG&E
Customers 179 884 17,111 21,036 45,337 93,058 –
Million CMI 0.0797 0.665 40.5 65.4 78.2 165 –
# PSPS Events 3 6 51 38 218 110 –

Table 1: Number of PSPS events by firm, by year, and the number of customers impacted. CMI is Customer
Minutes Impacted, the product of the minutes of shutoff and number of customers per circuit. Note that number
of customers impacted is the sum of customer shutoffs experiences, but not the unique number of customers
impacted.

indicators. Each index ranges from 0-100, with 100 being the most vulnerable and 0 being the least.

The indices are constructed as the average of ranks of several factors, as in August et al. (2021).

For socioeconomic vulnerability, this includes rate of high school non-attainment, rent-burdened

low-income households, limited English proficiency, living below twice the federal poverty line, and

share unemployed. For the health risk index, this includes asthma incidence, cardiovascular disease

incidence, and rate of low birth weight infants.

To match these records to circuits, I take the average of values from each census tract that

contains a given circuit segment. I weight these averages by the length of the circuit in each census

tract. I am able to match records for 5,000 out of 5,411 circuits, and for 1,071 of the 1,103 circuits

with a PSPS event.

Figure 2 plots these scores per circuit against the total number of PSPS events (among circuits

with at least one event), the total number of recorded ignitions (among circuits with at least one

ignition), and the total customer minutes interrupted (among circuits with at least one event).

Each plot also includes the best-fitting line to these observations, to help summarize the trend

among these scatter plots.

2.4 Weather data

For weather observations, I use the GridMET weather dataset from Abatzoglou (2013) and an

archive of areas with a red flag warning. GridMET was designed to support applications in modeling

wildfire risk, and includes a rich set of relevant weather variables. GridMET includes primary

variables, constructed via satellite- and geography-guided interpolation from weather stations, and

variables derived from these primary observations.

Primary variables are specific humidity, precipitation, minimum relative humidity, maximum

relative humidity, surface downwelling shortwave flux in air (a measure of solar radiation), minimum

air temperature, maximum air temperature, wind speed, and wind direction. Derived variables are

expected to be relevant for predicting wildfire risk: burning index, energy release component,
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(a) PSPS Events (b) Ignitions

Figure 1: Map of which circuits had PSPS events (a) and ignitions (b) from my data. State borders and
boundaries between electric utilities are shown.

potential evapotranspiration, reference evapotranspiration, dead fuel moisture at 100 hours, and

dead fuel moisture at 1000 hours. See Abatzoglou (2013) for more details on the development of

this dataset. Each variable is reported daily at a 4 km resolution across the United States. To

merge GridMET records with my dataset, I take the average of weather records in each grid cell a

circuit passes through, weighted by the length of the circuit in each grid cell.

In addition to weather variation, firms use Red Flag Warnings from the National Weather

Service to make PSPS decisions. Over 98% of shutoffs occur during a Red Flag Warning, a period

when the National Weather Service has identified weather conditions that could sustain catastrophic

fires. I include an indicator of whether a Red Flag Warning was in effect in any part of a circuit

by merging a historical archive of Red Flag Warning shapefiles.1

Summary statistics of the weather data are given in Appendix A. The trends in weather data

show that conditions are becoming drier, hotter, and more conducive to wildfire, consistent with

a literature studying the consequences of climate change for California (Westerling and Bryant,

2008). Relative to the full sample, Red Flag Warnings are drier, hotter, and more elevated, and

PSPS events occur in windier and drier conditions and at higher elevation.

1From https://mesonet.agron.iastate.edu/info/datasets/vtec.html, accessed 9 December 2021.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Scatter plots showing vulnerability indices and various outcomes, for circuits with nonzero values of
PSPS events or ignitions. Each plot includes a best-fitting line for the observations. The coefficient on the
index and and the standard error (in parentheses) of each line are reported in the legend.

3 Methods

In this section, I describe regression models based on utilities’ wildfire management plans that allow

me to measure the association between vulnerability indices and factors in utilities’ decisions. I

estimate separate regressions for three components: PSPS shutoffs, ignitions along lines, and the

cost of an outage to the impacted community.

Per their filings to the CPUC, utilities initiate a PSPS if the expected degree of damages (that

is, the product of expected damages conditional on ignition and the probability of ignition) exceeds

the cost of failing to provide power.2 The shutoff decision is a binary choice model, where the

utility weighs the expected damages from a wildfire (“Wildfire Risk”) against the utility’s cost of

failing to provide power (“PSPS Risk”). Utilities use separate prediction problems for probability

of an ignition and size of fire conditional on ignition (PG&E, 2021; SCE, 2021; SDG&E, 2021a).

This approach is common in both classical statistical (Xi et al., 2019) and machine learning (Jain

2Legislation requires that utilities making shutoff decisions must quantify benefits and risks of de-energization
events, and document “how the power disruptions to customers, residents, and the general public is weighed against
the benefits of a proactive de-energization.”
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et al., 2020) approaches to predicting wildfire size.

While I have data (or proxies) to determine the probability of shutoffs, the probability of

ignition, and the cost of failing to provide power, I am not able to estimate the damages from a

fire conditional on ignition. Damages from a wildfire are a function of wildfire size and the features

of land damaged by the wildfire. Both elements may be related to vulnerability factors, and the

association could be positive or negative. For example, lower-SES areas have lower property values

(decreasing the estimated damages from a fire) and may have lower firefighting capacity (increasing

the size of a potential wildfire). Predicting fire size is a notoriously challenging problem, even given

modern machine learning techniques (Taylor et al., 2013; Xi et al., 2019; Jain et al., 2020). Utilities

use proprietary software to make these fire size predictions, with relatively high levels of accuracy.

In Appendix B, I document an attempt to predict fire size using linear regression and random forest

regressions. With publicly available data, I am unable to provide informative bounds on the degree

of fire size.

I express all regressions as a generalized linear model, to explain choices of fixed effects and

explanatory variables that apply to each regression. For a circuit i in utility service area U in time

period t, Xi is the set of vulnerability indices, Zit are additional controls, and αU,t is a utility-by-

time period fixed effect. yit is the outcome variable, which varies depending on the regression. The

additional controls vary by model specification, and may include weather variation, elevation, fire

risk scores, and population. Then the general model is:

g(yit) = αU,t + βXi + γU,tZit (1)

Where g(·) is the link function that determines the form of regression in a generalized linear model.

For linear regression (for cost of an outage) this is the identity function, and for logistic regression

(for shutoff decisions and ignition) this is the logit link function. Note that there is a separate

coefficient γU,t for each utility, for each time period. This choice captures the fact that each utility

develops their own shutoff decision rules each year.

This regression does not include interactions between terms, implying the assumption that

components are additively separable. This restriction rules out associations where the level of one

explanatory factor changes the effect of another explanatory factor on the outcome variable.

The main coefficient of interest is β, which captures the association between the outcome variable

and the vulnerability indices. Vulnerability indices are the SES index and health risk index, as

described in Section 2.3. I estimate two specifications of the outcome variables: one with utility-

level β coefficients, and one where I report aggregate estimates across all utilities.

I consider four different sets of variables for Zit: no controls, only population, population with

primary weather variables, and population with all weather variables. Primary weather variables

are those that are directly observed, such as temperature and humidity. All weather variables

also includes variables that were derived from other variables to represent wildfire hazard, such as

burning index or energy release component. In Section 2.4, I list each of the eleven primary weather

variables and the six derived weather variables. Appendix A gives summary statistics.

I choose not to include vegetation in my set of explanatory variables. By pruning tree limbs or
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other vegetation along lines, utilities can influence the level of vegetation. Vegetation is therefore

considered a bad control, and should be omitted even though it may influence the probability of

ignition or shutoff (Cinelli, Forney, and Pearl, 2022).

In the remainder of this section, I describe the model specifications for each outcome variable

I study.

3.1 PSPS Probability

To estimate association between PSPS shutoffs and vulnerability, I use logistic regression with PSPS

shutoffs as the outcome variable. I use a subset of data during red flag warnings from October 2013

(the month of the first PSPS event) onward. I limit the sample to red flag warnings because these

are widely used indicators of fire hazard. All utilities mention using red flag warnings as part of

their process for determining shutoffs (PG&E, 2021; SCE, 2021; SDG&E, 2021a). Over 90% of

PSPS events are declared during a red flag warning.

In Appendix D, I show results from a robustness exercise using the full sample. Generally, the

estimates are similar to those using only the subset with red flag warnings. Magnitudes of most

estimates are closer to zero.

3.2 Ignition Probability

To estimate the probability of ignition, I use logistic regression of ignitions along power lines. I

do so using a subset of data from years where utilities do not use PSPS. Table 1 shows the years

with PSPS observations. I use data from all firms in 2015 and 2016 and from a subset of firms

in 2014, 2017, 2018, and 2021. In years where utilities are able to use PSPS, the researcher does

not observe whether an ignition would have occurred without PSPS. Because the utility can choose

when to use PSPS and prevent the researcher from observing a potential ignition, it is only possible

to partially identify regression functions (Khan and Tamer, 2009). Subsets from years when firms

do not use PSPS are not subject to this censoring concern. I assume that the relationship between

weather variation and ignition probability is consistent between years when utilities do and do not

use PSPS; this could be violated if dry vegetation accumulates and fire risk increases over time, or

utilities choose to use other wildfire management strategies in years without PSPS.

In Appendix E, I show results from a robustness exercise and estimate ignition probabilities

using the full sample. I include results using the full time period, with two different assumptions on

the observed ignitions and shutoffs: that, absent a shutoff, each circuit with a PSPS event would

either have an ignition or no ignition. Overall, these results suggest that my conclusions in the

main analysis are robust to including ignition data from the full sample.

3.3 Cost of PSPS

Due to ambiguity between various documents, I both the number of customers impacted and

the customer minutes interrupted (CMI) as proxies to the firm’s cost of PSPS. These proxies

capture major sources of variance in the firm’s expected costs of PSPS. While neither is a perfect

approximation, they provide a reasonable estimate of how vulnerability indices influence the firm’s

cost of PSPS. I estimate linear regression of the log of each outcome variable. I use logs because

firms state that their costs are multiplicative in CMI or customers impacted.
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(1) (2) (3) (4) (5) (6)

Sens Index 53.28 50.01 50.16 48.21 39.65 39.19
(1.610) (1.160) (1.010) (0.439) (1.130) (0.768)

SES Index 54.18 57.34 49.01 48.65 50.35 51.91
(1.149) (0.712) (0.758) (0.349) (2.018) (1.193)

Observations 223 469 451 1885 81 181
Utility SCE SCE PGE PGE SDGE SDGE
≥ 24 Hours X X X

mean coefficients; se in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Summary of vulnerability indices (SES index and health risk index), by whether the observed outage
exceeds 24 hours. Standard error of the mean is in parentheses.

In firms’ Wildfire Mitigation Plans, they provide formulas to calculate the cost of a PSPS

as a simple function of customer minutes interrupted (CMI) and the total number of customers

interrupted (SCE 2021, p. 61; PG&E 2021, p. 52; SDG&E 2021a, p. 26). Firms also incorporate the

safety cost and financial cost of PSPS, as well as a reliability score. This safety cost is calculated as a

constant factor multiplied by CMI, and the financial cost scales with the cost of shutoff (SCE, 2022;

PG&E, 2020; SDG&E, 2021b). PG&E incorporates a scaling function if the safety, reliability, or

financial costs of PSPS in a circuit exceed 10% of the largest recorded wildfire damages; I neglect this

nonlinearity for simplicity. SDG&E plans to incorporate the health sensitivity of subpopulations,

but I do not observe decisions made with these rules (SDG&E, 2021a, p. 30). In 2021, SCE began

weighting some components of its cost function by the number of vulnerable customers per line; I

do not have access to their conversion formula and do not attempt to model this improvement. By

taking the regression with logs of CMI or number of customers impacted, this conversion factor is

absorbed into the constant during linear regression and does not impact my estimates.

SCE is the only firm to specify how they form ex-ante predictions of the CMI. In their post-

event reports, SCE calculates their CMI as a constant number of minutes multiplied by number

of customers impacted, effectively making the cost of a shutoff a function of function solely of the

number of customers (Valdberg, Tozer, and Kilberg, 2021, p. 16). No other firms publish their

ex-ante PSPS cost calculations. I assume that they either use a constant factor, or the expected

CMI per outage based on the empirical duration of PSPS outages.

If firms use a constant outage duration to estimate costs, this approximation may systematically

undervalue the cost to low SES or high health risk communities. The number of customers impacted

and CMI for a given outage are stochastic; depending on weather conditions, firms may be able to

de-energize a smaller section of the circuit or be forced to prolong the outage. To inspect this, I

compare the average health risk and SES indices for circuits with PSPS outages above and below

24 hours. Table 2 shows these summary statistics. For SCE, outages over 24 hours occur in circuits

with significantly higher SES index (indicating lower-SES circuits), and significantly lower health
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risk index. This shows that SCE’s stated decision systematically undervalues the cost of an outage

to low-SES populations.

4 Results

I evaluate the association between vulnerability factors and the rates of PSPS shutoff by using

logistic regression. I then evaluate the association between vulnerability factors and the probability

of ignition using logistic regression, and the costs of an outage using linear regression. I report both

separate results for each utility, and results from aggregating observations from each utility. The

results from separate utilities are my preferred estimates, as this more closely models the setting

where each firm relies on their own data and methods. All regressions include utility-by-year

fixed effects, and all population or weather control variables are interacted with these fixed effects.

I use four specifications: no controls (beyond fixed effects), only population, primary weather

variables plus population, and all weather variables (including calculations of wildfire hazard) plus

population.

The dependent variables of interest are the health risk index and socioeconomic factor index

from CalEnviroScreen. In these indices, 0 is the least vulnerable and 100 is the most vulnerable.

Increasing the socioeconomic or health risk index by 1 is equivalent to an average increase of 1 per-

centage point across the ranks of the sub-indices. A positive coefficient indicates that higher health

risk (lower SES) circuits have a greater rate of PSPS shutoffs or ignition, or that the magnitude of

costs from the outage is larger. For logistic regression, these coefficients represent the amount that

log-odds change with an increase of 1 unit of the index. They can be approximately interpreted

as the percentage change in likelihood given an increase in 1 unit of the index, as the coefficients

are fairly close to 0. For example, an estimated coefficient of 0.01 indicates that PSPS events or

ignitions are 1% more likely in circuits with 1 higher index. I refer to circuits where the population

has a lower (higher) average health risk index as lower (higher) health risk circuits, and circuits

where the population has a lower (higher) average SES index as lower (higher) SES circuits.

Figure 3 visualizes estimates of the association between vulnerability indices and log-odds of

a PSPS shutoff. Figure 4 shows estimates for the association between vulnerability and three

factors that contribute to the shutoff decision: ignition, CMI impacted, and number of customers

impacted. Tables reporting the estimates are provided in Appendix C. Results from some alternate

specifications are provided in Appendix D (for PSPS probability) and Appendix E (for ignition

probability).

4.1 PSPS Probability

As described in Section 3.1, I use a subset of data during red flag warnings from October 2013

(the month of the first PSPS event) onward to estimate how vulnerability indices are associated

with the probability of PSPS. Appendix D shows the results using the full sample; for firm-level

estimates, the patterns are similar but the magnitude of effects is lower.
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(a) PSPS, Health Risk Index (b) PSPS, SES Index

Figure 3: Summarizing coefficients from logistic regression of PSPS decisions. Groups on the x axis collect
results from regression with a given set of controls. Pseudo R squared values are shown in parentheses below
each collection. Error bars show the 95% confidence interval. Each group of plots is ordered SCE, PG&E,
SDG&E, Aggregate.

Without controlling for weather factors (column 1), higher health risk circuits are significantly

less likely to have a PSPS in both SCE and PG&E, and more likely in SDG&E. This finding is

significant at the p = 0.001 level for PG&E and SDG&E, and at the p = 0.05 level for SCE. Lower

SES circuits are more likely to have a shutoff in PG&E and SDG&E, and less likely in SCE; this

finding is significant at the p = 0.001 level for PG&E and SDG&E, and at the p = 0.01 level for

SCE. These magnitudes are on the order of 0.01, so a 1 point increase in the index corresponds to

roughly one percent difference in the likelihood of PSPS.

After controlling for population and weather variation (columns 2-4), model fit (shown by the

pseudo-R squared in parentheses below each group of columns) improves but these patterns remain

largely consistent. McFadden (1973) suggests that a pseudo-R squared of 0.2-0.4 suggests good

model fit for logistic regression, indicating that this model acceptably fits the PSPS decisions after

controlling for weather variation. The exception is that the coefficient on the health risk index

for SCE is no longer significant, but the coefficient on socioeconomic factors for SCE is larger in

magnitude and is statistically significant at the p = 0.001 level.

When using the aggregate sample, I find that there is a significant (at the p = 0.001 level)

negative correlation between the health risk index and PSPS, but that the correlation between

SES index and PSPS is only positively significant at the p = 0.05 level. As the utility-level esti-

mates show, there is significant heterogeneity in these associations between firms. These aggregate

values, which present an average experience of PSPS rates across all utilities, are therefore not

representative of the experience of PSPS shutoff rates in any service area.

I do not observe the full set of relevant variation that firms have while making these decisions,

and therefore these estimates may be susceptible to omitted variable bias. In linear models, Oster

(2019) gives an approach to quantify the degree of omitted variable bias by comparing the stability

of coefficients as the model fit improves. I am not aware of an analogous approach for logistic
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regression. Informally, the sign and magnitude of coefficients remain relatively stable as the model

fit improves while including population and weather controls, indicating that these conclusions may

be robust to incorporating additional variables.

4.2 Ignition Probability

As described in Section 3.2, I use data from years where utilities did not conduct PSPS to estimate

the probability of ignition. This avoids the identification concern that when a firm conducts a

PSPS, I do not observe whether an ignition would have occurred without that intervention. In

Appendix E, I conduct a robustness exercise using the full set of data. I evaluate the coefficients

assuming that each PSPS event would be an ignition, or that no PSPS event would be an ignition.

The conclusions below still hold in both alternate specifications, suggesting that my findings hold

regardless of any changes in the relationship between weather and ignition probability over time.

The coefficient estimates from this regression are shown in Figure 4a and Figure 4d. Many of

the utility-level coefficient estimates are statistically indistinguishable from 0. In PG&E circuits,

higher health risk circuits are significantly (at p = 0.001 level) less likely to have an ignition and

lower SES circuits are more likely to have an ignition. This finding is robust to including population

and weather variables. At the p = 0.01 level, ignitions in SDG&E lines are positively correlated

with higher vulnerability indices, although these relationships are not significant after controlling

for weather factors.

In the aggregate, these coefficient estimates are significant (at p = 0.001 level). I find that

ignitions are positively correlated with the SES index, and negatively correlated with the health

risk index. This shows that both lower SES circuits and higher health risk circuits have higher

rates of ignition, after controlling for weather and population differences.

Some patterns from the coefficient estimates are similar to those of the PSPS decisions, although

less precisely estimated. Without controlling for weather variation, I find that lower SES circuits

have higher rates of ignition in PG&E and SDG&E, and lower rates of ignition in SCE. I find

that higher health risk circuits have higher rates of ignition in SDG&E, and lower rates in PG&E.

Controlling for population and weather variation, the only significant associations that remain

are that lower SES circuits in PG&E have higher rates of ignition and that higher health risk

circuits in PG&E have lower rates of ignition. This is similar to the findings from the regression

on PSPS results, although there is greater uncertainty. This suggests that population and weather

variation are able to explain much of the observed differences in ignitions between more and less

vulnerable communities. These coefficient results generally show that the same patterns of unequal

treatment occur in ignitions and in PSPS decisions. Both observations could be explained by

unequal conditions along electric distribution lines, although I do not have data on conditions

along electric lines that would be necessary to evaluate that hypothesis.

4.3 Costs of Outages

I use two proxies to find how vulnerability indices correlate with the cost of an outage, as calculated

by the utilities. This cost is the value the utility uses when weighing the costs and benefits of a

shutoff; it reflects the estimated size of the disruption from declaring a PSPS event. As discussed
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(a) Ignition, Health Risk Index (b) CMI, Health Risk Index (c) Customers, Health Risk Index

(d) Ignition, SES Index (e) CMI, SES Index (f) Customers, SES Index

Figure 4: Summarizing coefficients from regressions, with various controls. (a) and (d) show logistic regression
of ignitions, (b) and (e) show regression of log customer minutes interrupted, and (c) and (f) show log number
of customers impacted. Groups on the x axis collect results from regression with a given set of controls. R
squared values are shown in parentheses below each collection of regression results. For ignition, the average
pseudo R squared from each first-stage regression is reported. Error bars show the 95% confidence interval.
Each group of plots is ordered SCE, PG&E, SDG&E, Aggregate.

in Section 3.3, I use customer minutes interrupted (CMI) and number of customers impacted.

The results of these regressions are shown in Figure 4b and Figure 4e (for CMI) and Figure 4c

and Figure 4f (for number of customers impacted). The patterns are generally similar between

regression of CMI and number of customers impacted, although both are relatively noisy. Estimates

with log CMI are generally larger in magnitude and more precisely estimated than those using log

number of customers. Without controlling for weather variation, there is a significant positive

correlation between low SES and the cost proxy for SCE (p value < 0.001) and PG&E (p value

0.001 for CMI, 0.029 for customers). There is a significant negative correlation for the health risk

index for PG&E (p value < 0.001). After controlling for weather variation, these observations are

largely similar.

After aggregating data from all utilities, I am able to get more precise estimates. I find that

by both measures, the magnitude of disruption is significantly lower in high-health risk circuits (p

value < 0.001). I find that CMI is positively associated with low-SES circuits (p value < 0.001),

although I do not find a significant association between the number of customers impacted and

SES.

Rules that determine the cost of PSPS may disadvantage low-SES or high-health risk popula-

tions if the number of customers is negatively correlated with these indices. This occurs regardless

of whether the rules intend to discriminate based on these characteristics; that is, it is an example
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of statistical rather than taste-based discrimination (Guryan and Charles, 2013). The utility’s de-

cision rule places more weight on circuits with higher historical customer outages. If circuits with

a higher share of vulnerable individuals are less impacted by shutoffs, the utility’s rule calculates

a lower cost from shutoffs in those circuits. These findings indicate that PG&E’s decision rules

may disadvantage high health risk circuits. Utilities can adjust their rules to avoid this potential

discrimination, and some already are. SCE already scales part of their PSPS risk score by the size

of populations with medical needs (Valdberg, Tozer, and Kilberg, 2021, p. 16), and SDG&E has

plans to implement a similar program (SDG&E, 2021a, p. 30).

5 Conclusions

I find that PSPS is used more frequently in low-SES circuits among two of California’s major

utilities, and among higher health risk circuits in one of the major utilities. After controlling for

population and weather variation, model fit improves but these patterns remain largely consistent.

This shows that the difference in rates of PSPS by vulnerability indices is largely unexplained by

population or weather differences.

I find some evidence that factors in firms’ PSPS decisions are also associated with vulnerability

indices. I find that ignitions are more frequent in low-SES circuits and in lower health risk circuits

in PG&E, but otherwise do not find significant associations within any individual utility’s service

area. After aggregating data from all utilities, I find that both the probability of ignition and the

magnitude of PSPS disruption are higher in low-SES circuits, and in lower health risk circuits.

This work starts to explore a gap in the literature on empirically assessing the equity of adapta-

tion mechanisms. More research is needed in this area more broadly, as well as to better understand

the impacts of electric utilities’ response to wildfire risk. This research agenda is challenging with-

out better data about the firm’s problem, particularly how the firm computes costs and benefits of

PSPS. These data would allow researchers to explore a broader range of research questions, such as

the explorations of systematic bias in Obermeyer et al. (2019) or Rambachan (2021). Future work

should also explore how utilities invest to reduce future wildfire risk, and whether these investments

are equitably distributed among communities with different vulnerability to wildfire hazards.

Data Availability

The data that support the findings of this study are openly available. They can be accessed

at https://doi.org/10.7910/DVN/AAFQRQ. The code used to generate this file is also openly

available, and can be accessed at https://github.com/maxoboe/PSPS_equity.
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A Weather Summary Statistics

In this section, I include additional summary statistics about relevant variables from the GridMET

dataset. Table 3 gives the average of each primary and derived weather variable, for all observations

in my dataset, observations during a red flag warning, and circuits during a PSPS event. Red Flag

Warnings are drier, hotter, and more elevated than the full sample, and PSPS events occur in

windier and drier conditions and in higher locations. The derived variables Burning Index and

Energy Release Component, two measures of the potential for a large fire, are higher during Red

Flag Warnings and during PSPS events.

Figure 5 shows how some of these key weather variables have changed over time. Relative

humidity has declined in all service areas over this sample, and maximum temperature has increased

overall in California and in SCE and SDG&E’s service areas. The Burning Index and Energy Release

Component are increasing in all service areas.
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(1) (2) (3)

Max Air Temperature (C) 23.85 28.26 23.45
(8.039) (6.359) (6.404)

Min Air Temperature (C) 10.01 11.85 9.892
(5.573) (5.104) (4.879)

Precipitation Amount (daily mm) 1.240 0.0587 0.00353
(5.506) (0.772) (0.0723)

Specific Humidity (kg/kg) 0.00641 0.00523 0.00396
(0.00217) (0.00252) (0.00168)

Wind Velocity at 10 m (m/s) 3.320 3.674 5.332
(1.590) (1.669) (2.123)

Wind From Direction (Degrees past North) 233.8 228.4 224.6
(83.69) (92.18) (112.8)

Mean Vapor Pressure Deficit (kPa) 1.273 1.946 1.572
(0.948) (0.840) (0.699)

Max Relatively Humidity (%) 78.15 57.56 51.27
(19.43) (21.52) (19.49)

Min Relatively Humidity (%) 33.84 16.63 15.35
(18.50) (11.88) (9.919)

Surface Downwelling Shortwave Flux (W/m2) 223.8 232.1 190.1
(96.92) (74.97) (47.95)

Burning Index (Derived) 36.06 54.76 68.36
(20.94) (16.75) (19.70)

Energy Release Component (Derived) 45.87 66.71 69.75
(23.76) (15.08) (14.25)

Potential Evapotranspiration (Derived, mm) 4.204 5.450 5.114
(2.414) (2.149) (1.803)

Reference Evapotranspiration (Derived, mm) 5.770 8.009 8.015
(3.353) (3.100) (2.824)

Dead Fuel Moisture 100 hr (Derived, %) 12.96 8.608 7.879
(5.108) (3.107) (2.656)

Dead Fuel Moisture 1000 hr (Derived, %) 14.08 9.844 9.371
(5.491) (2.672) (2.728)

Elevation 223.4 293.8 468.8
(319.2) (377.6) (401.3)

Observations 16303343 652310 3333

Table 3: Summary statistics of GridMET data from October 2013 through 2021. Columns separate the full
sample, the sample during a red flag warning, and the sample during a PSPS event. Observations are weighted
by the length of each circuit segment. Standard errors of the mean for each column are in parentheses.
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(a) Maximum temperature (b) Maximum humidity

(c) Burning index (d) Energy release component

Figure 5: Selected weather variables over time. Average values in all of California, and in the service area of
the three major utilities.

B Predicting Fire Size

I use public data to attempt to predict fire size given weather covariates. From 1992-2018, com-

prehensive records of fire size are available from the US Forest Service (K C Short, 2014; Karen

C Short, 2021). From 2019-2021, I include records from the National Interagency Fire Service.3

Records include the date, fire size, and latitude and longitude of ignition. The final database in-

cludes 240,239 records within California. I then merge these data with my weather observations

from GridMET.

I model the problem of predicting catastrophic fires both as a regression and classification

3From https://data-nifc.opendata.arcgis.com/datasets/nifc::wfigs-current-wildland-fire-perimeters/

about, accessed 11 January 2022.
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Regression Fire size ¿= 300 acres Fire size ¿= 500 acres Fire size ¿= top 2%
R squared Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

Linear 0.06311 0.6907 0.6455 0.7017 0.6624 0.6691 0.6115
Linear Interacted 0.08927 0.723 0.6612 0.7302 0.6893 0.6888 0.6271
Random Forest 0.08446 0.02007 0.9994 0.01766 0.9994 0.02622 0.9991

Table 4: Results from random forest and linear regression at predicting large fires.

(a) Linear (b) Linear interacted (c) Random forest

Figure 6: Predicted vs actual fire size, using various regression methods.

problem. To predict fire size, I regress the log of fire size against the full set of weather variables

from GridMET, as well as yearly fixed effects and fixed effect terms per utility’s service area. For

classification trials, I use three definitions of “large fire”: top 0.02 quantile (my definition), larger

than 300 acres4, and larger than 500 acres.5. In each classification trial, I weight each observation

by the inverse frequency of its class to predict the relatively rare event of a large fire. I consider a

linear set of weather variables, linear regression with interactions between weather variables, and

random forests with 5-folds cross validation.

Table 4 summarizes the results of these trials. For classification trials, I report the specificity

(share of negative outcomes that are correctly predicted) and sensitivity (share of positive out-

comes that are correctly predicted) of each prediction method, for each “large fire” definition. For

regression, I report the R2 value. Figure 6 shows the scatter plots of predicted fire size vs. actual

fire size.

Overall, these results indicate poor performance at predicting fire size. I have limited ability

to extrapolate fire size, meaning I cannot construct informative bounds on the missing data as

4Definition from https://www.nps.gov/olym/learn/management/upload/fire-wildfire-definitions-2.pdf,
accessed 1 April 2022.

5Definition from Holmes, Huggett, and Westerling (2008).
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required to identify counterfactuals in Rambachan (2021).

C Regression Results in Tabular Form

Here, I include tabular forms of the visualizations showing the results of the main regression. The

regression methods are described in Section 3, and these results are discussed in more detail in

Section 4. Separate regression tables are provided for aggregate and utility-level analyses.

Table 5 and Table 6 show the results from logistic regression of PSPS shutoffs on the vulner-

ability indices and additional controls. Before aggregating data across utilities, higher health risk

circuits are significantly less likely to have a PSPS in both SCE and PG&E, and more likely in

SDG&E. This finding is significant at the p = 0.001 level for PG&E and SDG&E, and at the

p = 0.05 level for SCE. Lower SES circuits are more likely to have a shutoff in PG&E and SDG&E,

and less likely in SCE; this finding is significant at the p = 0.001 level for PG&E and SDG&E, and

at the p = 0.01 level for SCE. After aggregating data, and controlling for weather variation, there is

not a very significant relationship between SES and PSPS shutoffs. This is due to the heterogeneity

in effects at the utility level. However, PSPS is significantly less likely in high-health risk circuits.

Table 7 and Table 8 show the results from logistic regression of ignitions on the vulnerability

indices and additional controls. The pseudo-R squared value is relatively low, even for the model

with both primary and derived weather covariates. Before aggregating data across utilities, re-

sults are generally quite noisy, and many coefficients are not statistically distinguishable from 0.

After aggregating data, ignition probability is significantly lower in low-health risk circuits and

significantly higher in low-SES circuits.

Table 9 and Table 10 show the coefficient estimates from linear regression of the log of CMI

(columns 1-4) and the log number of customers impacted (columns 5-8). Before aggregating data

across utilities, results are generally quite noisy, and many coefficients are not statistically distin-

guishable from 0. After aggregating data, these outcomes are significantly higher in low-health risk

circuits, and the CMI is significantly higher in low-SES circuits.
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(1) (2) (3) (4)
psps psps psps psps

SCE x Health -0.00335∗ -0.00355 0.00136 -0.000467
(0.00167) (0.00222) (0.00226) (0.00239)

SCE x SES -0.00565∗∗ -0.00562∗∗ -0.0247∗∗∗ -0.0244∗∗∗

(0.00202) (0.00211) (0.00271) (0.00270)

PG&E x Health -0.0193∗∗∗ -0.0184∗∗∗ -0.0111∗∗∗ -0.0154∗∗∗

(0.00145) (0.00147) (0.00144) (0.00163)

PG&E x SES 0.0122∗∗∗ 0.0111∗∗∗ 0.00987∗∗∗ 0.0161∗∗∗

(0.00129) (0.00124) (0.00157) (0.00182)

SDG&E x Health 0.0394∗∗∗ 0.0465∗∗∗ 0.0386∗∗∗ 0.0360∗∗∗

(0.00425) (0.00498) (0.00635) (0.00728)

SDG&E x SES 0.0247∗∗∗ 0.0404∗∗∗ 0.0148∗∗ 0.0220∗∗∗

(0.00397) (0.00385) (0.00452) (0.00495)

Observations 375064 375064 370411 370411
Pseudo R2 0.081 0.090 0.292 0.371
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5: Results from logistic regression of PSPS events. Perfectly predicted failures are omitted. A positive
coefficient indicates that higher health risk (lower SES) circuits have a greater rate of PSPS shutoffs.

(1) (2) (3) (4)
psps psps psps psps

Health Index -0.0104∗∗∗ -0.0122∗∗∗ -0.00495∗∗∗ -0.00780∗∗∗

(0.00107) (0.00124) (0.00118) (0.00130)

SES Index 0.00695∗∗∗ 0.00872∗∗∗ 0.000340 0.00377∗

(0.00109) (0.00112) (0.00135) (0.00150)

Observations 375064 375064 370411 370411
Pseudo R2 0.075 0.081 0.287 0.366
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Regression of PSPS shutoffs, after aggregating data from all utilities. Perfectly predicted failures are
omitted. A positive coefficient indicates that higher health risk (lower SES) circuits have a greater rate of PSPS
shutoffs.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
ignition ignition ignition ignition ignition ignition ignition ignition ignition

Health Index -0.00314 -0.0113∗∗∗ 0.0213∗∗ -0.00178 -0.0111∗∗∗ 0.0162∗ 0.00720∗ -0.0123∗∗∗ 0.0114
(0.00209) (0.00114) (0.00665) (0.00264) (0.00115) (0.00723) (0.00303) (0.00127) (0.00871)

SES Index 0.00308 0.0148∗∗∗ 0.0174∗∗ 0.00244 0.0146∗∗∗ 0.0196∗∗ -0.00436 0.00936∗∗∗ 0.00969
(0.00258) (0.00110) (0.00664) (0.00262) (0.00110) (0.00625) (0.00278) (0.00133) (0.00672)

Observations 1950168 4939641 700344 1950168 4939641 700344 1950168 4939641 700344
Pseudo R2 0.006 0.007 0.013 0.007 0.007 0.017 0.047 0.059 0.080
Utility SCE PG&E SDG&E SCE PG&E SDG&E SCE PG&E SDG&E
Population X X X X X X
Primary X X X
Derived X X X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7: Results from logistic regression of PSPS events. A positive coefficient indicates that higher health risk
(lower SES) circuits have a greater rate of ignitions. Robust standard errors are reported.

(1) (2) (3) (4)
ignition ignition ignition ignition

Health Index -0.00773∗∗∗ -0.00824∗∗∗ -0.00775∗∗∗ -0.00763∗∗∗

(0.000998) (0.00106) (0.00116) (0.00117)

SES Index 0.0118∗∗∗ 0.0122∗∗∗ 0.00632∗∗∗ 0.00577∗∗∗

(0.00102) (0.00103) (0.00119) (0.00120)

Observations 7590153 7590153 7590153 7590153
Pseudo R2 0.009 0.010 0.054 0.059
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Results from logistic regression of ignition, after aggregating data from all utilities. A positive
coefficient indicates that higher health risk (lower SES) circuits have a greater rate of ignitions. Robust standard
errors are reported.
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(1) (2) (3) (4) (5) (6) (7) (8)
Log CMI Log CMI Log CMI Log CMI Log Cust Log Cust Log Cust Log Cust

SCE x Health -0.00808∗ -0.00780∗ 0.00861 0.00932 -0.00633∗ -0.00606 0.0106∗ 0.0118∗

(0.00327) (0.00384) (0.00487) (0.00505) (0.00309) (0.00364) (0.00475) (0.00491)

SCE x SES 0.0303∗∗∗ 0.0298∗∗∗ 0.0154∗∗ 0.0130∗ 0.0253∗∗∗ 0.0246∗∗∗ 0.0126∗ 0.0115∗

(0.00497) (0.00502) (0.00512) (0.00525) (0.00486) (0.00493) (0.00507) (0.00523)

PG&E x Health -0.0208∗∗∗ -0.0207∗∗∗ -0.0153∗∗∗ -0.0163∗∗∗ -0.0167∗∗∗ -0.0170∗∗∗ -0.0137∗∗∗ -0.0134∗∗∗

(0.00275) (0.00280) (0.00286) (0.00294) (0.00255) (0.00258) (0.00261) (0.00268)

PG&E x SES 0.0119∗∗ 0.0118∗∗ 0.00790∗ 0.0107∗∗ 0.00731∗ 0.00783∗ 0.00302 0.00372
(0.00363) (0.00369) (0.00384) (0.00385) (0.00335) (0.00340) (0.00354) (0.00356)

SDG&E x Health -0.0108 -0.0315∗∗ -0.0353∗ -0.0246 -0.00472 -0.0274∗∗ -0.0302∗ -0.0260
(0.00803) (0.0104) (0.0162) (0.0194) (0.00654) (0.00856) (0.0137) (0.0171)

SDG&E x SES 0.00697 -0.00131 0.0130 0.0104 0.00375 -0.00582 0.00659 0.00370
(0.00545) (0.00620) (0.0110) (0.0125) (0.00476) (0.00531) (0.00963) (0.0114)

Observations 3270 3270 3270 3270 3270 3270 3270 3270
R2 0.172 0.176 0.308 0.348 0.106 0.112 0.236 0.265
Population X X X X X X
Primary X X X X
Derived X X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Results from linear regression of proxies to PSPS cost, CMI (columns 1-4) and number of customers
(columns 5-8). A positive coefficient indicates that higher health risk (lower SES) circuits have higher average
CMI or number of customers impacted. Robust standard errors are reported. Outcome variable values of 0 are
omitted.

(1) (2) (3) (4) (5) (6) (7) (8)
Log CMI Log CMI Log CMI Log CMI Log Cust Log Cust Log Cust Log Cust

Health Index -0.0167∗∗∗ -0.0179∗∗∗ -0.0123∗∗∗ -0.0119∗∗∗ -0.0134∗∗∗ -0.0146∗∗∗ -0.0106∗∗∗ -0.00958∗∗∗

(0.00198) (0.00210) (0.00235) (0.00248) (0.00184) (0.00195) (0.00216) (0.00228)

SES Index 0.0138∗∗∗ 0.0139∗∗∗ 0.00992∗∗∗ 0.0103∗∗∗ 0.00957∗∗∗ 0.00979∗∗∗ 0.00544∗ 0.00513
(0.00254) (0.00260) (0.00287) (0.00297) (0.00237) (0.00244) (0.00270) (0.00282)

Observations 3270 3270 3270 3270 3270 3270 3270 3270
R2 0.164 0.169 0.301 0.343 0.098 0.104 0.227 0.257
Population X X X X X X
Primary X X X X
Derived X X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10: Results from linear regression of proxies to PSPS cost, CMI (columns 1-4) and number of customers
(columns 5-8). A positive coefficient indicates that higher health risk (lower SES) circuits have higher average
CMI or number of customers impacted. Robust standard errors are reported. Outcome variable values of 0 are
omitted.
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D PSPS regression with full sample

In the main text, I estimate PSPS probability using data during red flag warnings. As a robustness

exercise, I estimate the same relationships using the full sample. I only include observations from

years where a utility is using PSPS; this is without loss of generality as the model includes year-

by-utility fixed effects.

Table 11 and Table 12 show the results from logistic regression of PSPS shutoffs on the vulner-

ability indices and additional controls, with all data. Before aggregating data across utilities, the

results are generally similar to those from the main estimation, although magnitudes of effect sizes

are smaller. Higher health risk circuits are significantly less likely to have a PSPS in both SCE and

PG&E, and more likely in SDG&E. This finding is significant at the p = 0.001 level for PG&E and

SDG&E, and at the p = 0.05 level for SCE. Lower SES circuits are more likely to have a shutoff

in PG&E and SDG&E, and less likely in SCE; this finding is significant at the p = 0.001 level for

SDG&E, and at the p = 0.01 level for SCE and PG&E. After aggregating data, and controlling for

weather variation, there is a significant negative correlation between both indices and likelihood of

PSPS shutoff.
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(1) (2) (3) (4)
psps psps psps psps

SCE x Health -0.00226 -0.00275 -0.000788 -0.00441∗

(0.00165) (0.00213) (0.00224) (0.00223)

SCE x SES -0.0100∗∗∗ -0.00988∗∗∗ -0.0298∗∗∗ -0.0301∗∗∗

(0.00196) (0.00208) (0.00270) (0.00265)

PG&E x Health -0.0128∗∗∗ -0.0118∗∗∗ -0.00465∗∗∗ -0.00683∗∗∗

(0.00101) (0.00101) (0.00115) (0.00125)

PG&E x SES 0.00848∗∗∗ 0.00757∗∗∗ -0.00118 0.00365∗∗

(0.000902) (0.000858) (0.00119) (0.00142)

SDG&E x Health 0.0429∗∗∗ 0.0349∗∗∗ 0.0359∗∗∗ 0.0312∗∗∗

(0.00352) (0.00385) (0.00523) (0.00557)

SDG&E x SES 0.0189∗∗∗ 0.0314∗∗∗ 0.0147∗∗∗ 0.0195∗∗∗

(0.00421) (0.00366) (0.00429) (0.00430)

Observations 7335132 7335132 6658739 6658739
Pseudo R2 0.051 0.059 0.357 0.445
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 11: Results from logistic regression of PSPS events, using the full sample. Perfectly predicted failures
are omitted. A positive coefficient indicates that higher health risk (lower SES) circuits have a greater rate of
PSPS shutoffs.

(1) (2) (3) (4)
psps psps psps psps

Health Index -0.00684∗∗∗ -0.00820∗∗∗ -0.00165 -0.00380∗∗∗

(0.000840) (0.000931) (0.00101) (0.00106)

SES Index 0.00407∗∗∗ 0.00559∗∗∗ -0.00631∗∗∗ -0.00328∗∗

(0.000839) (0.000849) (0.00112) (0.00126)

Observations 7335132 7335132 6658739 6658739
Pseudo R2 0.046 0.054 0.354 0.442
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 12: Regression of PSPS shutoffs, after aggregating data from all utilities, using the full sample. Perfectly
predicted failures are omitted. A positive coefficient indicates that higher health risk (lower SES) circuits have
a greater rate of PSPS shutoffs.
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E Ignitions regression with alternate sample

In the main text, I estimate ignition probability using data from years where firms do not declare

PSPS, to avoid a potential data censoring problem. As discussed in Section 3.2, this choice if

the relationship between weather variables and ignition probability is not consistent between years

when utilities do and do not use PSPS. As a robustness exercise, I include results using the full

time period, with two different assumptions on the observed ignitions and shutoffs: that, absent

a shutoff, each circuit with a PSPS event would either have an ignition (Table 13) or no ignition

(Table 15). Overall, these results suggest that my conclusions in the main analysis are robust to

including ignition data from the full sample.

This provides suggestive evidence about the partially identified set that contains the true pa-

rameter. To fully characterize that set, I could enumerate all possible potential realizations of the

missing data and repeat the estimation procedure for each potential outcome. Due to the immense

computational cost of such a procedure, I only repeat the two-stage estimation procedure for these

two scenarios.

Table 13 and Table 14 show the results from the using the full sample and treating each missing

value as a true positive. The findings that are statistically significant (at the p = 0.001 level) from

Table 7 in the main analysis are also significant in these regressions: low-SES circuits in PG&E

(and in the aggregated regression) have higher rates of ignition, as do lower health risk circuits.

This regression finds additional significant associations, although many of these are not robust to

an alternate assumption on the missing data. Note that the pseudo R squared is much higher in

this sample - this is because the sample now includes PSPS shutoffs, where logistic regression has

a higher accuracy than with ignitions.

Table 15 shows the results from using the full sample and treating each missing value as a true

negative. Again, the statistically significant findings from the main analysis are confirmed in these

regressions. Many of the additional significant associations from treating each missing value as a

true positive are not significant in this exercise, although both find that lines in low-SES circuits

in SDG&E are significantly more likely to have an ignition.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
ignition ignition ignition ignition ignition ignition ignition ignition ignition

Health Index -0.000153 -0.0123∗∗∗ 0.0322∗∗∗ 0.00128 -0.0117∗∗∗ 0.0243∗∗∗ 0.00287 -0.0118∗∗∗ 0.0187∗∗∗

(0.00113) (0.000615) (0.00272) (0.00141) (0.000617) (0.00303) (0.00152) (0.000693) (0.00372)

SES Index -0.00299∗ 0.0134∗∗∗ 0.0197∗∗∗ -0.00359∗∗ 0.0129∗∗∗ 0.0253∗∗∗ -0.0150∗∗∗ 0.00963∗∗∗ 0.0106∗∗∗

(0.00134) (0.000583) (0.00292) (0.00138) (0.000575) (0.00255) (0.00164) (0.000744) (0.00290)

Observations 3120696 9879282 1925307 3120696 9879282 1925307 3120696 9879282 1896380
Pseudo R2 0.034 0.029 0.045 0.035 0.030 0.069 0.198 0.165 0.329
Utility SCE PG&E SDG&E SCE PG&E SDG&E SCE PG&E SDG&E
Population X X X X X X
Primary X X X
Derived X X X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13: Results from logistic regression of ignitions, using the full sample, with PSPS results counted as
ignitions. This is the assumption that all censored results would have been true positives.

(1) (2) (3) (4)
psps psps psps psps

Health Index -0.00688∗∗∗ -0.0077∗∗∗ -0.00616∗∗∗ -0.00712∗∗∗

(0.000534) (0.000573) (0.000611) (0.000619)

SES Index 0.00934∗∗∗ 0.0100∗∗∗ 0.00318∗∗∗ 0.00419∗∗∗

(0.000541) (0.000546) (0.000663) (0.000686)

Observations 14925285 14925285 14896358 14896358
Pseudo R2 0.031 0.034 0.159 0.183
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 14: Results from logistic regression of ignitions, using the full sample, with PSPS results counted as
ignitions. Results are aggregated across all utilities. This is the assumption that all censored results would
have been true positives.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ignition ignition ignition ignition ignition ignition ignition ignition ignition

Health Index 0.00144 -0.0119∗∗∗ 0.0179∗∗∗ 0.00460∗ -0.0117∗∗∗ 0.0133∗∗ 0.00889∗∗∗ -0.0137∗∗∗ 0.00860
(0.00155) (0.000769) (0.00430) (0.00187) (0.000776) (0.00461) (0.00207) (0.000871) (0.00553)

SES Index 0.00298 0.0167∗∗∗ 0.0205∗∗∗ 0.00178 0.0166∗∗∗ 0.0224∗∗∗ -0.00362 0.0125∗∗∗ 0.0137∗∗∗

(0.00180) (0.000759) (0.00404) (0.00182) (0.000761) (0.00376) (0.00200) (0.000924) (0.00409)

Observations 3120696 9879282 1867158 3120696 9879282 1867158 3120696 9879282 1846371
Pseudo R2 0.007 0.007 0.013 0.008 0.007 0.019 0.052 0.060 0.086
Utility SCE PG&E SDG&E SCE PG&E SDG&E SCE PG&E SDG&E
Population X X X X X X
Primary X X X
Derived X X X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 15: Results from logistic regression of ignitions, using the full sample, with no PSPS results counted as
ignitions. This is the assumption that all censored results would have been true negatives.
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(1) (2) (3) (4)
ignition ignition ignition ignition

Health Index -0.00694∗∗∗ -0.00757∗∗∗ -0.00862∗∗∗ -0.00854∗∗∗

(0.000691) (0.000726) (0.000796) (0.000801)

SES Index 0.0131∗∗∗ 0.0135∗∗∗ 0.00875∗∗∗ 0.00854∗∗∗

(0.000704) (0.000710) (0.000827) (0.000839)

Observations 14867136 14867136 14846349 14846349
Pseudo R2 0.010 0.011 0.057 0.062
Population X X X
Primary X X
Derived X

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 16: Results from logistic regression of ignitions, using the full sample, with no PSPS results counted as
ignitions. Results are aggregated across all utilities. This is the assumption that all censored results would
have been true negatives.
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