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Average temperatures 1°C warmer than pre-industrial levels

Figure 1: Historical and projected average temperature, under various climate

scenarios. From Copernicus Climate Change Service, ECMWF. https:

//climate.copernicus.eu/latest-projections-future-climate-now-available
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Climate change already has severe impacts

– Damages in agriculture,

mortality, productivity, energy

– Driven by extreme weather and

shifting averages

– Today’s talk: damaging heat

in U.S. corn production

– Methods relevant for other

sectors

Figure 2: How much climate change impacted

global corn yields from 1980-2008. Units are

share of overall trend. Figure from Lobell et al.

(2011).
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Studying recent climate change can prepare for future impacts

– Can use data from recent change to:

- Anticipate damages from projected climate change

- Evaluate how much adaptation may offset damages

– Helps inform policy questions:

- Quantify benefit of climate change mitigation

- Identify sectors with limited adaptation

- Useful for long-term budget forecasts, social cost of carbon

– Requires estimating economic impact of weather shocks
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Can estimate impact of weather shocks from data

– Key measurement challenges:

- Address fixed effects to isolate weather shock (Deschênes and

Greenstone, 2007; Dell et al., 2012)

- Nonlinear impacts of weather (Schlenker and Roberts, 2009;

Deschênes and Greenstone, 2011)

- Identifying adaptation from panel variation (Barreca et al., 2016;

Burke and Emerick, 2016; Lemoine, 2018)

– Measurement targets:

- Elasticity of weather feature (Schlenker and Roberts, 2009; Burke

and Emerick, 2016; Downey et al., 2021)

- Damage function (Hsiang et al., 2017; Rode et al., 2021)
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Our application: extreme heat and crop yields

– Crop yields decline with high

temperatures (Schlenker and

Roberts, 2009)

– Major component of climate

change impacts (Hsiang et al.,

2017)

– Little evidence of adaptation

(Burke and Emerick, 2016;

Lemoine, 2018)

Figure 3: Change in corn yields with

exposure to one additional day in each

temperature bin. Estimates from OLS

estimation with county and year fixed

effects, from 1980-2019 U.S. corn

production.
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Measurement target: damages from extreme heat

– Elasticity of yield with respect to damaging heat

– Lets us estimate future damages:

- How does extreme heat impact crop yields?

– Lets us measure adaptation:

- Is elasticity changing over time?
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We introduce new measurement approach

– Panel double machine learning (DML) estimator

– Addresses fixed effects without parametric restrictions

– Good for high-dimensional and/or nonlinear settings

– Learns function with less data than standard approaches (e.g. Dell

et al. 2014; Hsiang 2016)

– Properties of estimator are not main focus today
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With this estimator, we can:

– Consider flexible functional forms

– Include high-dimensional weather features

– Measure elasticity in short panels

– Preserve low standard errors
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Today’s talk: preview of results

– How does extreme heat impact crop yields?

- DML finds significantly greater damages than OLS

– Is elasticity changing over time?

- No evidence that elasticity changes over time
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Related Literature

– Economics of climate change:

- Developing a damage function: Auffhammer et al. (2013), Dell

et al. (2014), Hsiang (2016), Burke et al. (2015), Hsiang et al.

(2017), Rode et al. (2021)

- Evaluating adaptation: Barreca et al. (2016), Burke and Emerick

(2016), Lemoine (2018), Mérel and Gammans (2021)

– Extreme heat in agriculture: Schlenker and Roberts (2009),

Burke and Emerick (2016), Lobell et al. (2013), Butler and

Huybers (2015), Liu et al. (2016)

– Machine learning in environmental economics: Crane-Droesch

(2018), Knittel and Stolper (2019), Deryugina et al. (2019), Stetter

et al. (2022)

– Double/debiased machine learning: Belloni et al. (2016),

Chernozhukov et al. (2018), Colangelo and Lee (2020), Klosin

(2021), Rothenhäusler and Yu (2019), Chernozhukov et al. (2022)
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New estimator to measure climate change damages

– Develop estimator of continuous treatment effects in panel data

– In paper: prove asymptotic normality, debiasedness

– Show that estimator works via simulation exercise

– Measure impacts of extreme heat in U.S. agriculture

- What is the extreme heat elasticity of crop yields?

- Is this changing over time?
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Why (double) machine learning

– Don’t always have expert guidance to develop linear model

– ML: flexible modeling and low standard errors

– Requires less data than classical nonparametric methods

– DML: overcome regularization/overfitting bias from ML
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Notation for estimating impact of extreme heat

– Schlenker and Roberts (2009) introduce a parsimonious linear model:

yit = ai + β1lowerit + β2higherit + g(precit) + εit (1)

– yit is log corn yield, lowerit is beneficial heat exposure, higherit is

damaging heat exposure, precit precipitation

– We allow general interactions, polynomial terms:

yit = ai + γ0(Dit ,Xit) + εit (2)

– Dit treatment variable (damaging heat), Xit control variables

(beneficial heat, precipitation)

– Elasticity is β2 in 1, ∂γ0/∂Dit in 2
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Clarification: Growing Degree Days/Extreme Heat

(a) (b)

(c) (d)

Figure 4: Transformations from daily minimum and maximum temperature records

into the weather variables used in the analysis.
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Our panel double machine learning method

Our approach:

1. Take basis function transformations of D,X

2. Address fixed effects via first differences (Wooldridge, 2010)

3. Fit regression function γ̂ via Lasso/other machine learning (ML)
details

4. Take analytical derivative of γ̂ details

5. Correct estimates using α̂, a second ML (Chernozhukov et al., 2022)
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Introducing α, the Riesz Representer

– α is the Riesz Representer to the derivative operator

IE

[
∂∆h(Di,t ,Xi,t)

∂Di,t

]
= IE[α(Di,t ,Xi,t)∆h(Di,t ,Xi,t))] (3)

– Can find average derivative of an arbitrary function h using α

instead of taking a derivative 1

– Example: average derivative of γ(X ) where X ∼ N(0, 1). Via

integration by parts after expanding the expectation,

IE

[
∂γ(X )

∂X

]
= IE[Xγ(X )].

– Estimate α̂ separately from estimating γ̂, as in Chernozhukov et al.

(2022) details

1Delta is the first difference operator; for a function:

∆h(Di,t ,Xi,t) := h(Di,t ,Xi,t) − h(Di,t−1,Xi,t−1)
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DML combines two ML estimates

τ̂ = IE

[
∂∆γ̂i,t
∂Di,t

+ α̂(Di,t ,Xi,t)(∆Yi,t −∆γ̂i,t)

]
(4)

– Conceptually: γ does regression, α takes a derivative

– Combining these, we correct biases from either alone (Chernozhukov

et al., 2022)

– α is Riesz Representer to the derivative operator

Full estimator includes cross folds; asymptotic variance accounts for

within-unit clustering details
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Simulation of nonlinear panel setting

– Evaluate average derivative with OLS, Lasso, and DML

– Nonlinear function of treatment, including interactions

– Correlation between treatment, covariates, fixed effect

– Panel dataset: N = 1000,T = 2

– Treatment variable D ∈ IR; control variables X ∈ IR20

– 1,000 Monte Carlo draws

Details
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Linear models can induce biases

Density plot of errors from 1000 simulation trials. Zero error in red.
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Flexible modeling with OLS has large standard errors

Density plot of errors from 1000 simulation trials. Zero error in red.
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Regularization (Lasso) induces biases

Density plot of errors from 1000 simulation trials. Zero error in red.
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Double machine learning corrects biases

Density plot of errors from 1000 simulation trials. Zero error in red.
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Measuring damages from extreme heat

– Measurement questions:

- How does extreme heat impact crop yields?

- Is elasticity changing over time?

– We estimate elasticity of U.S. corn yield with respect to extreme

heat (GDD above 29°C)

– One large channel where climate change impacts crops (Schlenker

and Roberts, 2009)

– With this new method, we can:

- Include polynomials and interactions

- Preserve low standard errors

- Estimate elasticity flexibly in short panels
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Data

– U.S. crop yields and weather from 1980-2019

– Counties east of 100°W

– Corn yield and area from USDA Survey of Agriculture

– Weather from Abatzoglou (2013), averaged from daily gridded

values to county level

– Relevant weather features: precipitation, Growing Degree Days

– Additional exercise includes 7 additional weather features
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Estimation: comparing 4 approaches

1. Schlenker and Roberts (2009) functional form

2. OLS with flexible set of basis functions

3. ML: Lasso without bias correction

4. DML: Lasso with our bias correction

– All address fixed effects via first differences

– All observations weighted by acres of corn per county

– ML/DML approaches use 5-folds cross validation
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Summary of results: better model fit, larger damages

OLS Linear OLS Poly Lasso DML

Average Derivative -0.005193 -0.005657 -0.005821 -0.005823

(0.000099) (0.000135) (0.000011) (0.000073)

MSE In Sample 0.080929 0.077958 0.077878 0.077878

MSE Cross Folds 0.080975 0.078353 0.078079 0.078079

Observations 63662 63662 63662 63662

Covariates 3 36 36 36

Table 1: Estimates of elasticity of corn yields with respect to increase in growing

season exposure to extreme heat. Standard errors clustered at county level.
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Difference is statistically, economically significant

– Differences are statistically significant:

- OLS Linear and DML: p value < 0.001

- OLS Linear and OLS Poly: p value 0.006

– Following Auffhammer et al. (2013), translate to economic damage

from climate scenarios

– Damage estimates under median climate scenario:

- OLS Linear: Central est. $16.2, 95% conf int [15.2, 17.1]

- DML: Central est. $17.7, 95% conf int [17.0, 18.4]
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Translating coefficient estimate into damages

Figure 5: Declines in corn yields by 2050 due to increased exposures to temperatures

above 29°C, under a range of climate scenarios. County-level processed data of

climate projections generously provided by Burke and Emerick (2016).
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Evaluating adaptation: Is elasticity changing over time?

– Damage declining over time could be evidence of adaptation

– Adaptation in the sense studied by Barreca et al. (2016) 2

– Captures intensive margin, system-level adaptation

– Estimate in 2-year panels from 1980-2019

2Distinct from Burke and Emerick (2016), which asks if elasticity varies with

exposure to climate change
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Cannot reject that elasticities are constant over time

OLS Linear DML

Trend 3.43e-05, p-val 0.433 Trend 9.52e-05, p-val 0.387
Estimating elasticity of corn yield over time, in 2-year panels. Line shows central

estimate, and grey band shows 95% confidence interval.
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Why are these estimates so variable?

– Some significant weather events (e.g. 1993 flood) more

– Other sources of variability:

- Extreme heat more damaging during certain phases of plant growth

(Ortiz-Bobea, 2013)

- Regional differences (Butler and Huybers, 2015; Ortiz-Bobea et al.,

2019)
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Conclusions

– Panel DML model works well in simulations

– In empirical application, similar results to Schlenker and Roberts

(2009)

– DML finds significantly greater damages

– No evidence that damages are decreasing over time

– Analysis with more weather variables finds similar results
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Detail on Estimating Lasso

1. Construct the dictionary of basis functions b, a p × 1 dictionary. We

do so by using polynomial basis functions of terms and interactions,

although other approaches like kernel functions or splines could be

used as long as the derivatives are bounded.

2. Set each function in the dictionary b to have mean 0 and variance 1

3. Find a vector of coefficients β̂ for our dictionary such that

∆γ̂(Di,t ,Xi,t) := ∆b(Di,t ,Xi,t)
′β̂ is a sparse linear approximation of

∆γ0(Di,t ,Xi,t). We do so by solving the following Lasso problem:

β̂ = argmin
β

{
1

n(T − 1)

n∑
i=1

T∑
t=1

(∆Yi,t −∆b(Di,t ,Xi,t)
′β)2 + rL|β|1

}
(5)

This procedure depends on the regularization weight rL, which we

determine by finding values that minimize test-set error in a

cross-folds procedure.

return



Detail on Estimating Derivatives

1. Construct the dictionary bD , a p× 1 dictionary of derivatives of each

basis function in b. For each basis function bj for j = 1, . . . , p in our

dictionary of basis functions, define its derivative as follows:

bjD(D,X ) =
∂bj(D,X )

∂D
(6)

2. Estimate the average derivative as:

IE

[
∂∆γ̂(Di,t ,Xi,t)

∂Di,t

]
= IE[bD(Di,t ,Xi,t)

′β̂] (7)

return



Simple example: how we estimate derivatives

Consider a simple setting where Xi,t ∈ IR, and where

γ0(Di,t ,Xi,t) = D2
i,tXi,t . Our basis function dictionary is

b(Di,t ,Xi,t) = {Di,t ,Xi,t ,D
2
i,tXi,t}. In our linear representation,

β0 = {0, 0, 1}.

In step 1, we obtain an estimate β̂ using Lasso. In step 2, we first define

the derivative of the basis functions. Here,

bD(Di,t ,Xi,t) = {1, 0, 2Di,tXi,t}. The estimated average derivative is

then: β̂1 + IE[2Di,tXi,t ]β̂3, where β̂j is the j th component of β̂.
return



Riesz Representer estimation details

We assume that α0 has a sparse linear form:

α0(Di,t ,Xi,t ,Di,t−1,Xi,t−1) = ∆b(Di,t ,Xi,t)
′ρ0. , and estimate ρ̂

ρ̂ = argmin
ρ

{
IE[(α0(Di,t ,Xi,t ,Di,t−1,Xi,t−1)−∆b(Di,t ,Xi,t)

′ρ)2] + rα|ρ|1
}

(8)

This equality holds regardless of the function b, so we estimate α from

data independently of estimating the function γ. We follow Chernozhukov

et al. (2022) and find ρ̂ to minimize the squared loss between α0 and α̂:

We introduce a novel optimization based approach; we show that it

results in lower bias, variance, and MSE than an iterative approach in

simulations
return



Riesz Representer estimation details

Find the estimator α̂(Wi,t) that minimizes the mean squared error (MSE)

between α̂ and α0:

α̂ = argmin
α

IE[(α0(Wi,t)− α(Wi,t))2]

With assumption that α0 = ρ0b(Wi,t), and that ρ0 is sparse:

ρ̂ = argmin
ρ

IE
[
(α0(Wi,t)−∆b(Wi,t)ρ)2

]
+ λ|ρ|1

= argmin
ρ
−2IE[bD(Wi,t)]ρ+ ρ′IE[∆b(Wi,t)

′∆b(Wi,t)]ρ+ λ|ρ|1

= argmin
ρ
−2M̂ρ+ ρ′Q̂ρ+ λ|ρ|1

2nd equality: from Riesz representation theorem,

IE[α0(Wi,t)h(Wi,t)] = IE[∂h(Wi,t)/∂D]

where M̂ := IE[bD(Wi,t)] and Q̂ := IE[∆b(Wi,t)
′∆b(Wi,t)]

return



Estimator with cross folds

τ̂ =
1

n(T − 1)

L∑
`=1

∑
i∈`

T∑
t=2

τ̂`;i,t

τ̂`;i,t =
∂∆γ̂`(Di,t ,Xi,t)

∂Di,t
+ α̂`(Di,t ,Xi,t ,Di,t−1,Xi,t−1)(∆Yi,t −∆γ̂`(Di,t ,Xi,t))

(9)

We assume that errors have a constant correlation within a panel unit

but are uncorrelated between panel units. Let

τ̂`;i = 1/(T − 1)
∑T

t=2 τ̂`;i,t . Then the asymptotic variance is:

V̂ =
1

n(T − 1)

L∑
`=1

∑
i∈`

{
T∑
t=2

(τ̂`;i,t − τ̂)2 + 2
T−1∑
t=2

T∑
t′=t+1

(τ̂`;i,t − τ̂`;i )(τ̂`;it′ − τ̂`;i )

}
(10)

return



Details of simulated dataset

Yi,t = ai + Di,t + D2
i,t + D3

i,t + Di,tX
(1)
i,t + .1θXi,t + εi,t (11)

– θ(j) = 1/j2

– Fixed effects ai , covariates Xi,t , and random noise εi,t are Gaussian

R.V.

– Treatment correlated with Xi,t , with noise from Beta distribution

Di,t ∼ .1θXi,t + Beta(1, 7)

Return



Elasticities over time, removing power and interactions

DML DML

No interactions No polynomials

Trend 3.7e-05, p-val 0.579 Trend 3.43e-05, p-val 0.433
Estimating elasticity of corn yield over time, in 2-year panels. Line shows central

estimate, and grey band shows 95% confidence interval. Some variability is driven by

interactions, especially from 1993 drought. return
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